博客
关于我
【数学】数学归纳法
阅读量:418 次
发布时间:2019-03-06

本文共 805 字,大约阅读时间需要 2 分钟。

数学归纳法是证明命题对所有正整数成立的一种重要技术。本文将介绍其两种主要形式,并通过实例展示其应用。

第一数学归纳法

第一数学归纳法通常分为三步:

  • 归纳奠基:验证当n=1时命题成立。
  • 归纳假设:假设当n=k时命题成立。
  • 归纳递推:由归纳假设推导出当n=k+1时命题也成立。
  • 通过这三步,可以证明命题对所有正整数n都成立。

    第二数学归纳法(完整归纳法)

    第二数学归纳法扩展了第一数学归纳法的应用范围:

  • 归纳奠基:验证当n=1和n=2时命题成立。
  • 归纳假设:假设当n≤k(k为正整数)时命题成立。
  • 归纳递推:由归纳假设推导出当n=k+1时命题也成立。
  • 通过这三步,可以证明命题对所有正整数n都成立。

    例子:数列收敛问题

    考虑数列{an}定义为:

    • a1 = 1
    • a_{n+1} + √(1 - an) = 0

    证明{an}收敛,并求lim_{n→∞}an。

    单调性证明

  • 初始验证

    • a1 = 1 > a2 = 0,满足a1 > a2。
  • 归纳假设

    • 假设对于某个k(k≥1),有ak-1 > ak。
  • 归纳递推

    • 计算a_{k+1} = -√(1 - ak)。
    • 由于ak < ak-1,√(1 - ak) < √(1 - ak-1),因此a_{k+1} > a_k。
  • 通过递推可知,数列{an}单调递减。

    下界证明

  • 初始验证

    • a1 = 1 > (-1 - √5)/2 ≈ -1.618。
  • 归纳假设

    • 假设对于某个k,ak > (-1 - √5)/2。
  • 归纳递推

    • 计算a_{k+1} = -√(1 - ak)。
    • 由于ak > (-1 - √5)/2,1 - ak < (3 + √5)/2 ≈ 1.618。
    • 因此,√(1 - ak) < √((3 + √5)/2) ≈ 1.272。
    • 所以,a_{k+1} = -√(1 - ak) > (-1 - √5)/2。
  • 通过递推可知,数列{an}下界为(-1 - √5)/2。

    转载地址:http://nftkz.baihongyu.com/

    你可能感兴趣的文章
    NodeJS实现跨域的方法( 4种 )
    查看>>
    nodejs封装http请求
    查看>>
    nodejs常用组件
    查看>>
    nodejs开发公众号报错 40164,白名单配置找不到,竟然是这个原因
    查看>>
    Nodejs异步回调的处理方法总结
    查看>>
    NodeJS报错 Fatal error: ENOSPC: System limit for number of file watchers reached, watch ‘...path...‘
    查看>>
    nodejs支持ssi实现include shtml页面
    查看>>
    Nodejs教程09:实现一个带接口请求的简单服务器
    查看>>
    nodejs服务端实现post请求
    查看>>
    nodejs框架,原理,组件,核心,跟npm和vue的关系
    查看>>
    Nodejs概览: 思维导图、核心技术、应用场景
    查看>>
    nodejs模块——fs模块
    查看>>
    Nodejs模块、自定义模块、CommonJs的概念和使用
    查看>>
    nodejs生成多层目录和生成文件的通用方法
    查看>>
    nodejs端口被占用原因及解决方案
    查看>>
    Nodejs简介以及Windows上安装Nodejs
    查看>>
    nodejs系列之express
    查看>>
    nodejs系列之Koa2
    查看>>
    Nodejs连接mysql
    查看>>
    nodejs连接mysql
    查看>>